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Abstract: The following paper shows the control and the practical use of magnetic bearings as rotary tables for
mill and drill machining of heavy workpieces. In contrast to conventional rotary tables, magnetic bearings have
certain advantages, which can only be used, if a stable and exact position control in five degrees of freedom is
implemented. The main focus of this paper is on the cascade control with optimal disturbance rejection, sliding
mode control and the decoupling of degrees of freedom.
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1 Introduction

Magnetic bearings are found in a diversity of applica-
tions. The most commons are very high speed drives,
e.g. [1], and flywheel energy storage systems, e.g. [2].
They can be classified in passive, which are based on
superconductors and permanent magnets [3], and ac-
tive, which are based on electromagnets and a con-
trol system [4]. The later ones have the advantage
that the characteristics can be adjusted and the posi-
tion setpoint changed. Rotary tables for machine tools
is a less common application for magnetic levitation.
It presents particular issues like the high perturbing
forces resulting from the milling or drilling operation;
elasticity of the moving part due to its form factor and
big diameters; low rotating speed; and changing mass
and centre of mass due to the different working pieces.
Very few contributions regarding magnetic bearings in
rotary tables can be found in the literature. Among
them, in [5] the design of the magnetic subsystem is
addressed for micro-machining.

In the present paper, two rotating tables with dif-
ferent diameters (1.5 m and 2 m) and for working
pieces of more than one ton, previously introduced
in [6], [8], [9], [10], is considered. The aim of this
paper is to analyse simple control methods able to ini-
tially stabilize the table, even with unknown working
pieces and perturbation, in the commissioning pro-
cess. Once the table is in controlled levitation, iden-
tification methods can be applied in order to improve
the stiffness, damp oscillations and improve the dy-
namic. In contrast to conventional bearings, the active

magnetic bearings have the advantages of no mechan-
ical contact between the rotor and the static parts, high
damping, nearly infinity static stiffness and adjustable
bearing properties (Figure 8). High-precision posi-
tioning before and during machining of workpieces,
as well as machining on rotating workpieces without
changing the mounting position are further benefits of
this technology.

On the other hand, the need of additional techni-
cal components for active magnetic bearings results in
higher costs and more complexness [6].

workpiece

rotating and
levitating table

stator housing

Figure 1: Rotary table prototype 2 (RTP2) with work-
piece (mw ≈ 900 kg)

Figure 1 shows a magnetic bearing as rotary table
with a heavy workpiece in a save and stable position.
Always attractive magnetic forces are the reason, why
the system equilibrium is unstable. Because of very
small air gaps under one milimeter and high magnetic
forces, high dynamic real-time-control [8] is neces-
sary to stabilise the rotor in five degrees of freedom
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by feedback control. Therefore predominantly linear
or nonlinear control concepts can be used to control
the state vector q in (1), which describes the position
and orientation of the rigid rotor in a coordinate sys-
tem fixed to the stator [9].

q = (dx, dy, dz, φx, φy)T (1)

The sensor and actuator collocation and the rotor
position respectively to q are shown in figure 2 exam-
plarily for rotary table prototype 1.
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Figure 2: Sensor (S1-S6), supporting actuator (M1-
M8) and centering actuator (M9-M10) configuration
of rotary table prototype 1

Rotation around z is realised externally by torque
motor control unit. For this reason φz is not part of
the rotor position vector q, used for feedback control.
To obtain q, a transformation matrix JSB is used to
calculate the rotor position depending on the vector of
position sensors xs = (xS1, ..., xS6)T in equation (2).

q = JSB · xs (2)

In the same way a transformation matrix JBAF

generates forces FA = (FM1, ..., FM10)T for each
actuator in equation (3), out of forces and mo-
ments in relation to a generalised force vector Fq =
(Fx, Fy, Fz,Mx,My)T regarding to q [10], [11].

FA = JBAF · Fq (3)

2 Modeling and system identification

For model based control design a plant model with
sufficient accuracy in structure and parameters is re-

quired. At first, this can be obtained by considering
only one decoupled degree of freedom with later ex-
tension to five degrees of freedom, where the coupling
can be taken into account.

2.1 Modeling of force actuators

The force generation is realised by hybrid magnets as
shown in figure 3. Here the magnetic forces Fo and
Fu are produced by the upper and lower hybrid mag-
net. By superposition of the fields of the permanent
magnet and the coil an attractive force is generated.
Because of the contrary winding of the upper and
lower electromagnet the upper force Fo is strength-
ened, while the lower force Fu is weakened, when
applying a positive current. And vice versa, when a
negative current is supplied. Therefore, both positive
and negative forces are applicable by defining iref as
reference current, which is applied by current control,
using a DC link voltage of 350 V between Vdd and
Vss. To perform a steady state of the rotor position,
the gravity force Fg of the rotorhas to be compensated.
This construction is called diffential configuration.

S

N

S

N

Current
Control

iref

i
V dd

V ss

F u

F o

F g

i

Figure 3: Differential configuration of two hybrid
magnets for one degree of freedom

The general magnetic force FM (i, d) (4) of hy-
brid magnets is proportional to the square of the cur-
rent i and the magnetic tension H0, and inversely pro-
portional to the square of the air gap d [6]. Thereby
a is a gain factor containing the number of windings
and the geometry.

FM (i, d) = a · (i+H0)2

d2
(4)

Superposition of upper and lower magnetic forces
in differential configuration leads to FM,hyb(i, do, du)
with the air gaps do and du (5).

FM,hyb (i, do, du) = Fo(i, do) − Fu(−i, du) (5)
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Defining d in (6) as the position of the rotor within
the full air gap distance dmax, do is determined with
the equation (7).

d = du (6)
do = dmax − d (7)

Equation (8) describes the magnetic force
FM,hyb(i, d) using (4), (5), (6) and (7). Because of
safety bearings, the minimum air gap is dmin. For
simplification k1 = k2+dmax and k2 = dmin are used
in (8). The identification problem is to find the four
parameters k1, k2, a and H0 to describe the nonlinear
algebraic characteristic curve (8). For this, an already
stable control configuration or an external force mea-
suring test environment is needed to identify the set of
parameters.

FM,hyb = a

[
(i+H0)2

(k1 − d)2 − (−i+H0)2

(k2 + d)2

]
(8)

The current for each pair of hybrid magnets
is supplied via a separate current controller, which
causes a dynamic transient behaviour. Figure 4 shows
the measured step responses for a set point current of 2
A for the supporting and the centering hybrid magnet
pair. Because of different mechanical construction,
there are differences in dynamics between centering
and supporting actuators.
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Figure 4: Measured, simulated and reduced model
step responses for a set point current of 2 A (Proto-
typ 1), supporting pair of hybrid magnets (left) and
centering pair of hybrid magnets (right)

The dynamic transient behaviour of one current
control loop with iref as reference current and i as
current through the winding, can be described by a
second order continous transfer function (9) based on
optimum amount [7] with the fundamental time con-
stant Tf .

Gc(s) =
i(s)

iref (s)
=

1

1 + 2Tfs+ 2T 2
f s

2
(9)

In terms of system order reduction and because of
the very small time constant of Tf = 0.22 ms, which
was determined by using the method of least squares,
it is possible to neglect the quadratic term 2T 2

f s
2, so

we get (10) with Ti = 2Tf .

Gc(s) =
i(s)

iref (s)
=

1

1 + Tis
(10)

Figure 4 shows measured and simulated current
step responses by (9) and the approximated behaviour
of the current control loop by order reduction (10).
It can be seen, that the order reduction describes the
transient behaviour without overshoot. This neglect is
used for control design and has no significant effect
on the control behaviour.

2.2 Plant model for one degree of freedom

Under assumption of a rigid rotor body the follow-
ing block diagram (Figure 5) reflects the nonlinear
dynamic plant behaviour in one degree of freedom.
Thereby FM,hyb is the nonlinear force characteristic
(8), d is the measureable position as plant output and
iref the plant input. The acceleration due to gravity g
is only acting as constant disturbing force in oposite
direction dz .

-

g

dḋd̈iref F M , hyb

i F 1
m ∫  

1
1+T i s

∫  

Figure 5: Block diagram of the nonlinear magnetic
bearing plant in one degree of freedom

By definition of the state variables x1, x2 and x3

(11), the overall system equations can be written as
follows in (12) with input u = iref .

(x1, x2, x3)T = (d, ḋ, i)T (11)

 ẋ1

ẋ2

ẋ3

 =


x2

1

m
FM,hyb(x3, x1) − g

− 1

Ti
x3 + u

 (12)

A linear state space model can be derived by
linearisation of the force characteristic FM,hyb =
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f(x3, x1) for one point of operation xb = (xb1, 0, x
b
3)T

along the dependent variables x3 (13) and x1 (14).

ki =
∂FM,hyb(x3, x1)

∂x3

∣∣∣∣
x3=xb

3

(13)

ks =
∂FM,hyb(x3, x1)

∂x1

∣∣∣∣
x1=xb

1

(14)

The obtained linear force parameters ki and ks,
following the linear state space model (15), in point
of operation, can be used for the linear control de-
sign. The state space vector x conforms to the vari-
ation around xb.

ẋ =

 0 1 0
ks
m 0 ki

m
0 0 − 1

Ti

x +

 0
0
1

u
y =

[
1 0 0

]T
x

(15)

Getting these parameters by experimental system
identification is only possible in a stable system con-
figuration. For first commissioning of magnetic bear-
ings, robust control implementation can be applied by
using a sliding mode controller with limited reference
current as controller output.

Table 1: Operation point parameters for rotary table
prototype 1 (RTP1) in the supporting degree of free-
dom (z-axis)

m ki ks Ti

1867 kg 530 N
A 110.6 · 106 N

m 0.44 · 10−3 s

Table 1 shows for example the linear plant pa-
rameters of the rotary table prototyp 1. These set of
parameters were found by experimental system iden-
tification for one point of operation xb1 = 0.595 mm
and xb3 = 0 A in dz direction. Because of the very
small time constant Ti in comparison with the sam-
ple time TS = 0.5 ms of the real-time-processing, it
is possible to neglect the dynamic behaviour to get a
simplified state space model (16) for control design.
This simplification can later be taken into account by
a summarised time constant TΣ.

ẋ =

(
0 1
ks
m 0

)
x +

(
0
ki
m

)
u

y =
[

1 0
]T

x

(16)

The new system input u = i = iref can be in-
terpreted as a magnetic force, while the output y is
the measured position of the corresponding degree of
freedom.

2.3 Plant model for five degrees of freedom

For five degrees of freedom the following linear state
space model (17) with the mass matrix M and the
diagonal matrices ki and ks can be derived from (16).

ẋ =

(
0 I

IM−1kT
s 0

)
x +

(
0

IM−1kT
i

)
u

y =
(

I 0
)
x

(17)
The system input vector u consists now of five

magnet currents respectively to each degree of free-
dom, while the output y is the measured position of
the rigid rotor and therefore equivalent to the state
vector q (1).

M =


m . . . 0
. m .
. m .
. Jx .
0 . . . Jy

 (18)

Assuming a diagonal mass matrix M of the plant
model, a completely decoupled feedback control of
each degree of freedom is possible. The mass param-
eter m and the moments of inertia Jx and Jy can be
fairly precisely quantified by CAD tool simulation.

3 Feedback control design

3.1 Cascade control

For practical points of view it was determined, that
cascade control is an advantageous control concept,
especially for first time implementing and for control
under real conditions. This concept makes it possible
to separately adjust the dynamic stiffness and damp-
ing of the levitating rotor by a suitable choice of the
controller parameters. In addition, limitations of the
physical state variables current, velocity and position
can be easily integrated, with the possibility of pre-
steering all state variables, in case of using a trajectory
generator [11].

Figure 6 shows the control structure of the cas-
cade control. The inner velocity closed loop can be
designed as a first order transfer element, by compen-
sating the magnetic force in dependence of the air gap.
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This can be achieved by direct feedforward control
of the measured displacement d and closing the inner
loop through the velocity controller Pqq.

d

k s

ki

-
Pq+

I q

s
Pqq

Compensations

Velocity­ControllerPosition­Controller
--

iref

vref

dref u

Figure 6: Block diagram of the cascade controller for
one degree of freedom with additional pre-steering in-
puts iref and vref

Pqq =
m

TΣki
(19)

Under assumption, that the parameters m and ki
are fairly precisely known, with Pqq in (19) the in-
ner closed loop gets approximately first order trans-
fer behaviour with the time constant TΣ. All small
time constants are included in TΣ as a sum. For opti-
mal disturbance rejection the parameters Pq and Iq for
the outer PI controller (symmetrical optimum) have to
adjust like (20), to get a symmetrical open loop am-
plitude frequency response (Figure 7) around the pass
through frequency ωD = (2TΣ)−1 [7].

A(ω)

ω1
2T Σ

1
4T Σ

1
T Σ

−40
dB
Dk.

−40
dB
Dk.

−20
dB
Dk.

I II III

Figure 7: Symmetrical open loop shaping around
ωD = (2TΣ)−1 for optimal disturbance rejection with
a maximum of phase reserve

Pq =
1

2TΣ
Iq =

1

8T 2
Σ

(20)

Thereby the adjustment of TΣ defines the dy-
namic stiffness of the levitating rotor, related to the
stator housing. High values of TΣ result in softer bear-
ing properties, but because of sinking damping also in
higher risk of instability. On the other hand, smaller
values of TΣ give more stiffness, but increase high fre-
quency signal components. In both cases there always
have to be enough phase reserve for a stable loop. This
implies, that TΣ can be adjusted only in a restricted
range. Taking into account, that the discrete controller
realisation adds additional delay into the open control
loop, due to the sample time TS = 0.5 ms, and that
additional signal filtering with TF = 1 ms is neces-
sary, the minimal value of TΣ for stable loop can not
be smaller than Ti + TF + TS ≥ 2 ms.

Gc(s) =
d(s)

dref (s)
=

1

1 + 4TΣs+ 8T 2
Σs

2 + 8T 3
Σs

3

(21)

Gd(s) =
d(s)

Fd(s)
=

8T 3
Σ

m

s

1 + 4TΣs+ 8T 2
Σs

2 + 8T 3
Σs

3

(22)
The ideal closed loop control behaviour can be

described by the transfer function Gc(s) (21), while
the ideal disturbance behaviour is characterised by
Gd(s) (22).
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−0.02

0

0.02
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d
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[m
m

]

0 0.2 0.4 0.6

−0.1

−0.05

0

0.05

0.1

Disturbance

t [s]

Figure 8: Control and disturbance step responses by
changing the controller parameter TΣ = 4 ms, TΣ =
6 ms and TΣ = 8 ms on RTP1 (experimental)

As can be seen in Figure 8, the variation of TΣ

influences the dynamic of the control behaviour and
the dynamic bearing stiffness. Because of unmodeled
dynamics in the control loop and digital implemen-
tation with fixed sampling rate, the bearing damping
also varies with TΣ. However by defining of only
one controller parameter, it is possible to influence the
dynamic behaviour respectively the bearing stiffness,
while symmetrical optimised control performance is
ensured.

Figure 9 shows step responses of cascade con-
trol configuration with TΣ = 5 ms for different mass
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Figure 9: Non pre-filtered step responses by cascade
control for a setpoint step of ∆dref = 40 µm and
different overall rotor masses (TΣ = 5 ms - RTP1)
(experimental)

loads. As can be seen, if the mass is varying in a wide
range, the step responses show different dynamical re-
sponse behaviour. Even unstable system responses
are expected in case of larger variations, which can-
not be quantified, because unstable operation for this
real application is not desired. Measured disturbance
responses with a force step of Fd = 2 kN are visi-
ble in figure 10, where the disturbance displacement
depends on the rotor mass.
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−0.02

0

0.02

0.04

0.06

0.08

m=1367 kg, F
d
=2 kN

t [s]

d
z

[m
m

]

0 0.2 0.4 0.6
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m=2367 kg, F
d
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Figure 10: Disturbance responses by cascade control
for a setpoint step of Fd = 2 kN with different overall
rotor masses (TΣ = 5 ms - RTP1) (experimental)

Looking at the disturbance transfer function for
symmetrical optimized magnetic bearings (22), ex-
hibits that the dynamic stiffness depends on the values
ofm and TΣ. Larger masses and a smaller TΣ lead to a
better dynamic bearing stiffness. As can be seen, with
an additional load of 1000 kg the dynamic stiffness
is almost twice as high as without load. For this rea-
son mass adaptation and robust control methods are
desired.

3.2 Sliding mode control

The main advantage of sliding mode control is its ro-
bustness against variations of plant parameters and
external disturbances. In fact, that the controller is

switching between two different control laws depen-
dent on the state vector, sliding modes occur. For lin-
ear systems (23) the control law is defined by (24)
with the switching function (25).

ẋ = Ax + bu (23)

u(x) =

{
+umax for sw(x) > 0
−umax for sw(x) < 0

(24)

sw(x) = kTx (25)

To guarantee that all system trajectories at state
space reach the switching area sw(x) in finite time,
the conditions (26) and (27) by Gao and Hung [13]
have to comply.

sw(x)ṡw(x) < 0 (26)

ṡw(x) = umax · sgn(sw(x)) − d · sw(x) (27)

Out of these conditions the following control law
(28) can be derived for one degree of freedom.

u(x) = −kTAx + umax · sgn(kTx) + d · kTx

kTb
(28)

Adjusting the dynamic behaviour of the control
loop is possible by setting the parameters umax, d and
k. For the linear state space model (16) an additional
integral state feedback is necessary for sliding mode
control to get stationary accuracy. Therefore (29) is
the basic model for sliding mode control design with
the new state x1, when ẋ1 = x2, x2 = d and x3 = ḋ.

ẋ =

 0 1 0
0 0 1

0 ks
m 0

x +

 0
0
ki
m

u
y =

[
0 1 0

]T
x

(29)

The switching parameter vector kT of the switch-
ing function sw(x), can be determined as a state feed-
back from the cascade control parameters (30).

kT =
m

ki

(
1

8T 3
Σ,

1

2T 2
Σ,

1

TΣ

)
(30)

By choosing d = 0 and TΣ = 5 ms the step re-
sponses in sliding mode configuration for one degree
of freedom are shown in figure 11.

In spite of mass parameter variations of 1000 kg,
the closed loop dynamic behaviour is completely un-
affected in contrast to the before investigated cascade
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Figure 11: Step responses by sliding mode control for
a setpoint step of ∆dref = 40 µm and different over-
all rotor masses (TΣ = 5 ms - RTP1) (experimental)
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Figure 12: Disturbance responses by sliding mode
control for a force step of Fd = 2 kN and different
overall rotor masses (TΣ = 5 ms - RTP1) (experi-
mental)

control concept. The investigation of external distur-
bance force rejection also yields robust dynamic stiff-
ness for different mass loads (Figure 12).

Because of the actuator dynamics and discret con-
trol implementation, highfrequently switching occurs
by using sliding mode control. Therefore the posi-
tion accuracy and the accoustic noise in steady state is
worse than in cascade control. This so called chatter-
ing and is visible by comparison of the noise intensity
between figures 9-10 and figures 11-12. The chatter-
ing problem can be decreased by using different meth-
ods improving the control law [12].

In case of commissioning magnetic bearings with
unprecisely known system parameters, sliding mode
control is a promising option to first get a stable rotor
position in all degrees of freedom. Because of limit-
ing the actuator force by the control law, mechanical
stress can be reduced in case of unstable operation.
This is very important especially for big rotary tables.
On this basis, identification methods can be applied to
get nearly exact system parameters.

3.3 Decoupling control

Disturbance forces during machining of workpieces
on an electromagnetic rotary table cause periodic dis-
placements of the rotor position. A milling process of
a heavy workpiece on rotary table prototyp 2 is shown
in figure 13.

workpiece

rotating and
levitating table
stator housing

milling machine

Figure 13: Workpiece milling on rotary table proto-
type 2 (RTP2) (mw ≈ 1900 kg)

Machining forces are acting in different space di-
rections, so that position displacements also appear in
different controlled degrees of freedom with various
amplitudes and frequencies. For a drilling process,
using a drill with a diameter of 30 mm, the displace-
ment dy over time is plotted in figure 14.

As can be seen in figure 14 left, vibrations ap-
pear during the drill process. The controller is able to
compensate stationary disturbance forces completely
by current adaptation, visible in figure 14 right. Only
dynamic force components lead to vibrations at a fun-
damental frequency of about 8 Hz, which cannot be
completely compensated, because of the limited dy-
namic bearing stiffness (22) by the cascade controller.

0 5 10 15

−0.05

0

0.05

Displacement

t [s]

d
y

[m
m

]

0 5 10 15

−4

−2

0

2

Current

t [s]

i y
[A

]

Figure 14: Displacement dy and current iy over time
during workpiece drilling, using a 30 mm drill (TΣ =
12 ms - RTP2) (experimental)

Matrix frequency response investigations (Figure
15) have figured out, that there are significantly cou-
plings between the degrees of freedom, even if the
plant is transformed into a decoupled control struc-
ture. The main reason for this is the center of gravity
of the levitating rotor, which is not exactly located at
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the reference point of the transformation. Since dif-
ferent workpieces are rigidly connected to the levita-
tion rotor, displacements of the center of gravity are
expected. Furthermore flux leakage of the magnetic
actuators also can lead to not desired coupling forces
and moments.
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Figure 15: Measured matrix frequency response
(dashed) in comparison with simulated decoupled
control behaviour (TΣ = 5 ms - RTP1) (experimen-
tal)

These couplings are visible in the non-diagonal
frequency responses in figure 15 and look similar
to commonly disturbance frequency responses. This
seems to be clear, because the controller is optimised
to eleminate disturbance forces. The diagonal fre-
quency responses of figure 15 show the measured con-
trol behaviour for each degree of freedom, compared
to the desired ones described by (21). It is strikingly,
that there are resonances, which are apparently caused
by the couplings.

To take these couplings into account in the plant
model, a space vector rBC (31) is used to describe the
distance from the center of gravity (C) to the reference
point of the coordinate transformation (B). This is il-
lustrated in figure 16. The forces F and moments M
are acting on the reference point.

rBC = (rdx , rdy , rdz)T (31)

When rdx , rdy and rdz are not zero, the diagonal
mass matrix M in (18) gets non-diagonal first order
moments (32). For the symmetrical rotor Jx is iden-

d x

d y

d z

⃗rBCC

B

F

M

Figure 16: Space vector rBC describing the distance
between center of gravity (C) and reference point (B)
of the levitating rotor

tical to Jy while couplings can be described by the
moment of deviation Jxy as non-diagonal elements of
the intertia tensor. The mass matrix now consists of
a (3x3) diagonal matrix for the translational degrees
of freedom, of the (2x2) inertia tensor and of the first
order moments arranged in mirror symmetry [6],[14].

M =


m 0 0 0 mrdz
0 m 0 −mrdz 0
0 0 m mrdy −mrdx
0 −mrdz mrdy Jx Jxy

mrdz 0 −mrdx Jxy Jy


(32)

Assuming the parameters of table 2 the model be-
haviour in comparison to the experimental frequency
plots can be seen in figure 17. Because of model
parameter uncertainties, signal filtering and magnetic
leakage flux, the modeling of couplings can only be
achieved approximately.

Table 2: Coupling parameters for RTP1 without work-
piece

rx ry rz Jxy

−0.05 m −0.05 m 0.027 m 36 kg ·m2

The resonances already mentioned in relation to
figure 15 now also appear in the plant model (Figure
17).

Vibrations by machining caused in one degree of
freedom, can easy propagate into other degrees of
freedom, if the control system is not completely de-
coupled. Therefore first decoupling of the plant is
necessary and then vibration damping methods can be
applied. Using the inverse M−1 of the non-diagonal
mass matrix (32) for designing the velocity controller
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Figure 17: Simulated coupled control behaviour in
comparison to the measured matrix frequency re-
sponse (dashed). (TΣ = 5 ms - RTP1) (experimental)

in figure 6, all couplings can be compensated in addi-
tion to the mass compensation.

−60
−40
−20

0
20
40

x
ref

x 
[d

B
]

y
ref

z
ref

φ
xref

φ
yref

−60
−40
−20

0
20
40

y 
[d

B
]

−60
−40
−20

0
20
40

z 
[d

B
]

−60
−40
−20

0
20
40

φ x
[d

B
]

10
1
10

2
10

3
−60
−40
−20

0
20
40

φ y
[d

B
]

10
1
10

2
10

3
10

1
10

2
10

3

Frequency [rad/s]
10

1
10

2
10

3
10

1
10

2
10

3

Figure 18: Matrix frequency response for the de-
coupled feedback control in comparison to figure 15
(dashed). (TΣ = 5 ms - RTP1) (experimental)

The measured frequency response plotted in fig-
ure 18 shows the control behaviour of the decoupled
system using the parameters in table 2. Because of
time delay by the current controllers and not exactly
known parameters, decoupling is only approximately
reachable. However, in some frequency responses the
maximum coupling amplitude could be decreased by
more than 10 dB.

4 Conclusion

This paper has presented the control design for mag-
netic bearings as rotary table for mill and drill ma-
chining of large and heavy workpieces. Model based
cascade control and sliding mode control concepts for
optimal disturbance rejection in five degrees of free-
dom has been shown. The investigation of couplings
in the control structure has figured out, that first de-
coupling is necessary to improve the control perfor-
mance and establish a basis for vibration damping of
milling and drilling processes on the table. Further
research needs to be done for online and offline iden-
tification of the mass matrix and for decoupling of ex-
ternal disturbance forces by drill and mill machining.

Acknowledgements: Investigations of rotary table
prototype 1 was allowed by Experimentelle Fabrik
Magdeburg, while mill and drill machining on ro-
tary table prototype 2 was possible by the support of
the GMV Genthiner Maschinen- und Vorrichtungsbau
GmbH company.

References:

[1] C.-R. Sabirin and A. Binder, Rotor levitation by
active magnetic bearing using digital state con-
troller, in EPE-PEMC, 2008, pp. 1625-1632.

[2] M. Subkhan and M. Komori, New Concept for
Flywheel Energy Storage System Using SMB
and PMB, IEEE Transactions on Applied Super-
conductivity, vol. 21, 2011, pp. 1485-1488.

[3] S.-O. Siems and W.-R. Canders, Advances in
the design of superconducting magnetic bear-
ings for static and dynamic applications, Su-
perconductor Science and Technology, 2005, p.
S86.

[4] T. Schuhmann, W. Hofmann and R. Werner,
Improving Operational Performance of Active
Magnetic Bearings Using Kalman Filter and
State Feedback Control, Industrial Electronics,
IEEE Transactions on, vol. 59, 2012, pp. 821-
829.

[5] R. Banucu, J. Albert, V. Reinauer, C. Scheiblich,
W.-M. Rucker, A. Hafla and A. Huf, Automated

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mario Stamann, Thomas Schallschmidt, Roberto Leidhold

E-ISSN: 2224-2856 207 Volume 9, 2014



Optimization in the Design Process of a Magnet-
ically Levitated Table for Machine Tool Applica-
tions, IEEE Transactions on Magnetics, vol. 46,
2010, pp. 2787-2790.

[6] O. Petzold, Modellbildung und Untersuchung
eines magnetisch gelagerten Rundtisches, Dis-
sertation Otto von Guericke University Magde-
burg, 2006.
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Magnetführungen, Dissertation University Han-
nover, 2004.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mario Stamann, Thomas Schallschmidt, Roberto Leidhold

E-ISSN: 2224-2856 208 Volume 9, 2014




